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Separation

Definition 1.

Let X be a topological space.

A separation of X is a pair U,V of disjoint nonempty open subsets of X

whose union is X .

(i.e., X = U ∪ V where U ∩ V = φ.)
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Connected

Definition 2.

The space X is connected if there is no separation of X .
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Note.

1. An alternative definition is that X is connected if and only if

the only subsets of X that are both open and closed in X are the

empty set and X itself.

2. Connectivity is a topological property.

Since connectivity is defined in term of open sets only.

If X is connected and Y is homeomorphic to X then Y is connected.

Dr S. Srinivasan (PAC) Unit - III 4 / 51



Lemma 1.

Let Y be a subspace of X .

A separation of Y is a pair of disjoint nonempty sets A and B

whose union is Y , neither of which contains limit point of the other.

The space Y is connected if there exists no separation of Y .
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Proof.

Suppose that A and B form a separation of Y .

i.e., A and B are open in Y such that A ∪ B = Y , A ∩ B = φ.

Since B is open in Y , Y − B = A is closed in Y .

Then A is both open and closed in Y .

Let Ā denotes the closure of A in X .

By Theorem 17.4, the closure of A in Y is Ā ∩ Y .

Since A is closed in Y , A = Ā ∩ Y .

Since A ∩ B = φ then Ā ∩ B = φ.
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By Theorem 17.6 Ā is the union of A and its limit points.

⇒ B contains no limit points of A.

Similarly, A contains no limit points of B.

Thus, a separation of Y is a pair of nonempty sets A and B

whose union is Y and neither contain a limit point of the other.

Conversely, suppose that A and B are disjoint nonempty sets whose

union is Y , neither of which contains a limit point of the other.
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Then Ā ∩ B = φ and A ∩ B̄ = φ.

Since A ∪ B = Y , then (Ā ∩ Y ) ∪ (B̄ ∩ Y ) = Y .

Since A ∩ (B̄ ∩ Y ) = φ and B ∩ (Ā ∩ Y ) = φ,

⇒ A = Ā ∩ Y and B = B̄ ∩ Y .

Thus A and B are both closed in Y .

i.e., A = Y − B and B = Y − A are both open in Y .

Hence, A and B is a separation of Y .
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Lemma 2.

If the sets C and D form a separation of X and

if Y is a connected subspace of X ,

then Y lies entirely in either C or in D.

Proof. The sets C and D form a separation of X .

⇒ C and D are both open in X .

By def, the sets C ∩ Y and D ∩ Y are open in Y .
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These two sets are disjoint and their union in Y .

Assume both are nonempty sets.

Then these two sets form a separation of Y ,

CONTRADICTING the hypothesis that Y is connected.

⇒ Either C ∩ Y or D ∩ Y is an empty set.

Hence Y lies entirely in either C or in D.
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Theorem 3.

The union of a collection of connected subspaces of X that have

a point in common is connected.

Proof.

Let {Aα} be a collection of subspaces of X .

Let p be a point in
⋂

Aα.

To prove Y =
⋃

Aα is connected.

Assume that Y = C ∪ D where C and D are a separation of Y .

Point p must be in either C or D.
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WLOG, say p ∈ C .

Since each Aα is connected.

By Lemma 2, it must lie entirely in either C or in D.

Since p ∈ Aα, it cannot lie in D and hence p ∈ C .

Hence Aα ⊂ C for every α.

⇒ Y =
⋃

Aα ⊂ C .

It CONTRADICTS the fact that D is nonempty.

i.e., the assumption that there is a separation of Y is false.

Hence Y =
⋃

Aα is connected.
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Theorem 4.

Let A be a connected subspace of X .

If A ⊂ B ⊂ Ā, then B is also connected.

Proof. Let A be connected in X , and let A ⊂ B ⊂ Ā.

To prove B is connected.

Assume that B = C ∪ D where C and D are a separation of B.

By Lemma 2, the set A must lie entirely in C or in D.

WLOG, suppose A ⊂ C .

Then Ā ⊂ C̄ .
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By Lemma 1, we have C̄ and D are disjoint.

i.e., C̄ ∩ D = φ.

⇒ B ∩ D = φ. (A ⊂ B ⊂ Ā ⊂ C̄)

This CONTRADICTS the fact that as part of a separation,

D 6= φ subset of B.

Thus the assumption that a separation of B exists is false.

Hence B is connected.
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Theorem 5.

The image of a connected space under a continuous map is connected.

Proof.

Let f : X −→ Y be a continuous function where X is connected.

Let f (X ) = Z .

Since the map obtained from f by restricting its range to the space

Z is also continuous. (by Theorem 18.2(e))

Consider the case of a continuous surjective map g : X −→ Z .

Dr S. Srinivasan (PAC) Unit - III 15 / 51



ASSUME Z = A ∪ B, where A and B form a separation of Z .

Since g is continuous, A and B are disjoint open sets.

⇒ g−1(A) and g−1(B) are disjoint open sets, which are nonempty

whose union is X .

⇒ g−1(A) and g−1(B) are a separation of X .

This CONTRADICTS the hypothesis that X is connected.

Hence there is no separation of Z = f (X ).

⇒ f (X ) is connected.
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Theorem 6.

A finite Cartesian product of connected spaces is connected.

Proof.

We prove the result for two connected spaces X and Y .

Then the general result follows by induction.

Choose (a, b) ∈ X × Y .

Then the horizontal slice X ×{b} is connected, being homeomorphic to X .
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Similarly, the vertical slice {x} × Y is connected, being

homeomorphic to Y .

For each x ∈ X , define

Tx = (X × {b})
⋃

({x} × Y ).

By Theorem 3, we have Tx is connected.

Next, consider
⋃

x∈X Tx = X × Y .

since the point (a, b) is common to each Tx .
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By Theorem 3, the union is connected.

That is, X × Y is connected.

The proof for any finite product of connected spaces follows by induction.

Since X1 × X2 × . . .× Xn is homeomorphic with

(X1 × X2 × . . .× Xn−1)× Xn.
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Connected Subspaces of the Real Line

Definition 1.

A simply ordered set L having more than one element is a

linear continuum if the following hold:

(1) L has the least upper bound property

(i.e., every set with an upper bound has a least upper bound).

(2) If x < y , then there exists z such that x < z < y .

Dr S. Srinivasan (PAC) Unit - III 20 / 51



Connected Subspaces of the Real Line

Theorem 1.

If L is a linear continuum in the order topology,

then L is connected and so are intervals and rays in L.

Proof.

Recall that a subspace Y of L is convex if for every pair of points a, b ∈ Y

with a < b, then entire interval [a, b] = {x ∈ L | a ≤ x ≤ b} lies in Y .
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We prove that Y is a convex subspace of L, then Y is connected.

Let Y be convex.

Proof by contradiction.

Suppose assume that Y has a separation.

i.e., Y = A ∪ B, where A and B are open in Y with A ∩ B = φ

Choose a ∈ A and b ∈ B.

WLOG, say a < b.

Since Y is convex then [a, b] ⊂ Y .
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Hence [a, b] is the union of the disjoint sets A0 = A ∩ [a, b] and

B0 = B ∩ [a, b], each of which is open in [a, b]

(since A and B are open in Y )

in the subspace topology on [a, b].

By Theorem 16.4, which is the same as the order topology .

Since a ∈ A0 and b ∈ B0, implies that A0 6= φ and B0 6= φ.

So A0 and B0 form a separation of [a, b].
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Let c = supA0.

We now show in to cases that c /∈ A0 and c /∈ B0, which

CONTRADICTS the fact that [a, b] = A0 ∪ B0.

From this contradiction, it follows that Y is connected.

Case 1.

Suppose c ∈ B0.

Then c 6= a (since a ∈ A and A ∩ B = φ).

So either c = b or a < c < b.
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In either case, since B0 is open in [a, b] then there is some interval

of the form (d , c] ⊂ B0.

If c = b we have a contradiction.

Since this implies that d is a smaller upper bound on A0, but d < c.

If c < b we note that (c, d ] ∩ A0 = φ since c is an upper bound of A0.

Then (with d as above where (d , c] ⊂ B0) we have that

(d , b] = (d , c] ∪ (c, b]

does not intersect A0.
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Again, d is a smaller upper bound on A0 than c, a CONTRADICTION.

We conclude that c /∈ B0.

Case 2.

Suppose c ∈ A0.

Then c 6= b since b ∈ B.

So either c = a or a < c < b.

Because A0 is open in [a, b], there must be some interval of the

form [c, e) contained in A0.
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By property (2) of the linear continuum L,

we can choose a point z ∈ L such that c < z < e.

Then z ∈ A0, CONTRADICTING the fact that c is an upper bound of A0.

We conclude that c /∈ A0.

We have shown that if Y is a convex subset of L then Y is connected.

Notice that intervals and rays are convex sets and so are connected.
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Corollary 2. The real line R is connected and so are intervals

and rays in R.
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Theorem 3. Intermediate Value Theorem.

Let f : X → Y be a continuous map, where X is a connected space

and Y is an ordered set in the order topology.

If a and b are two points of X and if r is a point of Y lying between

f (a) and f (b), then there exists a point c ∈ X such that f (c) = r .
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Proof. Suppose f ,X , and Y are as hypothesized.

The sets A = f (X ) ∩ (−∞, r) and B = f (X ) ∩ (r ,+∞) are disjoint

and nonempty.

(since (−∞, r) and (r ,+∞) are disjoint)

(since f (a) is in one of these sets and f (b) is in the other)

Each is open in f (X ) under the subspace topology.
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ASSUME there is no point c ∈ X such that f (c) = r .

Then f (X ) = A ∪ B and A and B form a separation of f (X ).

Since X is connected and f is continuous

By Theorem 23.5, then f (X ) is connected, a CONTRADICTION.

So the assumption that there is no such c ∈ X is false.

Hence f (c) = r for some c ∈ X .
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Definition 2.

Given points x and y of the space X , a path in X from x to y is a

continuous map f : [a, b]→ X such that f (a) = x and f (b) = y .

A space X is path connected if every pair of points of X can be joined

by a path in X .
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Lemma A. If space X is path connected then it is connected.

Proof. Let X be path connected.

Proof by contradiction.

Suppose assume that X is not connected.

Then A and B form a separation of X .

Let f : [a, b] −→ X be any path in X .

Since f is continuous and [a, b] is a connected set in R.
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By Theorem 23.5, f ([a, b]) is connected in X .

So by Lemma 23.2, f ([a, b]) lies either entirely in A or entirely in B.

But this cannot be the case if a is chosen from A and b is chosen from B,

a CONTRADICTION.

So our assumption that a separation of X exists is false.

Hence space X is connected.
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Connected components of X

Definition 1.

Given a topological space X , define an equivalence relation on X

by setting x ∼ y if there is a connected subspace of X containing both

x and y .

The equivalence classes are called components or connected

components of X .
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Theorem 1.

The components of X are connected disjoint subspaces of X

whose union is X , such that each nonempty connected subspace of X

intersects only one of them.

Proof.

We know that any equivalence classes on a set partition the set.

Since the components are by definition equivalence classes.

Therefore, the components are disjoint non empty connected subspace

of X whose union is all of X .

Dr S. Srinivasan (PAC) Unit - III 36 / 51



To prove each nonempty connected subspace of X intersects only

one of them.

ASSUME connected subspace A of X intersects two disjoint nonempty

components C1 and C2.

Say at x1 and x2, respectively.

Then x1 ∼ x2 since x1, x2 ∈ C1 and x1, x2 ∈ C2.
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Since the components are disjoint then C1 = C2, a CONTRADICTION.

So the assumption that a connected subspace can intersect

two components is false.

Thus, each nonempty connected subspace of X intersects

only one of them.

To show that a component C is connected.

Let x0 ∈ C .
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Then for each x ∈ C we have x0 ∼ x , so there is a connected

subspace Ax containing x0 and x .

From the above, a connected subspace cannot intersect two

components and so Ax ⊂ C .

Therefore, C =
⋃

x∈C Ax .

Since each Ax is connected and x0 ∈ Ax for all x ∈ C

Then by Theorem 23.3, C is connected.
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path components of X .

Definition 2.

We define another equivalence relation on the space X .

By defining x ∼ y if there is a path in X from x to y .

The equivalence classes are called path components of X .
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Theorem 2.

The path components of X are path connected disjoint subspaces of X

whose union is X , such that each nonempty path connected subspace of X

intersects only one of them. (Proof similar to Theorem 1)
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Lemma A.

Each connected component of a space X is closed.

If X has only finitely many connected components, then each component

of X is also open.
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Definition 3.

A space X is locally connected at x,

if for every neighborhood U of x , there is a connected neighborhood

V of x contained in U.

If X is locally connected at each of its points, it is said simply

to be locally connected.
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Definition 4.

A space X is locally path connected at x,

if for every neighborhood U of x , there is a path-connected neighborhood

V of x contained in U.

If X is locally path connected at each of its points, then it is said

to be locally path connected.
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Theorem 3.

A space X is locally connected if and only if for every open set U of X ,

each component of U is open in X .

Proof:

Suppose X is locally connected.

Let U be an open set in X .

Let x ∈ C be a connected component of U.

Then by the definition of locally connected, there is a connected

neighborhood V of x with V ⊂ U.
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Since V is connected, by Theorem 25.1, it must lie entirely in the

component C , V ⊂ C .

=⇒ So C is open.

Conversely, suppose that the components of open sets in X are open.

Let x ∈ X and let U be an arbitrary neighborhood of x .

Let C be the connected component of U which contains x .

Now C is connected and, by hypothesis, open in X .

So, by definition, X is locally connected.
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Theorem 4.

A space X is locally path connected if and only if for every open set

U of X , each path component of U is open in X .

(Proof similar to Theorem 3)
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Theorem 5.

If X is a topological space, each path component of X

lies in a component of X . If X is locally path connected, then

the component and the path components are the same.

Proof:

Let C be a component of X .

Let x ∈ C .

Let P be the path component of X containing x .

By Lemma 24.A, P is connected.
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By Theorem 25.1, P ⊂ C .

Suppose X is locally path connected.

ASSUME P 6= C .

Let Q denote the union of all the path components of X that are different

from P and which intersect C

(since P 6= C then Q 6= φ)
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As above, by Lemma 24.A and Theorem 25.1, each of these path

components must be in component C .

Since the path components partition X .

By Theorem 25.2, then the path components in Q, along with

path component P, partition C

Thus, C = P ∪ Q.

By hypothesized, X to be locally path connected.

By Theorem 25.4 each path component of X is open in X .
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Therefore P (a path component of X ) and

Q (a union of path components) are both open in X .

P and Q are disjoint by construction.

Thus P and Q form a separation of C , a CONTRADICTION.

So the assumption that P 6= C is false.

Hence P = C .
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